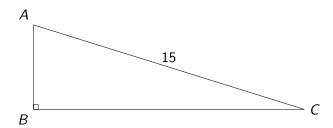
# Contest Problem Set 12113 Team Round Problem 3

### **David Sun**

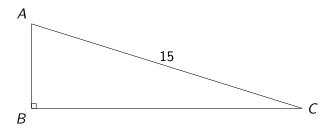
Math League, LLC





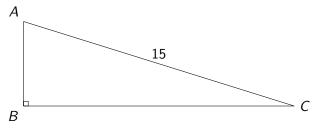

Identify the objective.

In right-angled  $\triangle ABC$ , the hypotenuse has a length of 15. If the perimeter of  $\triangle ABC$  is  $15 + \sqrt{353}$ , what is the area of  $\triangle ABC$ ?




David Sun Math League, LLC

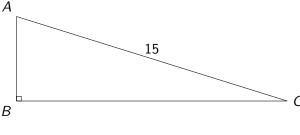






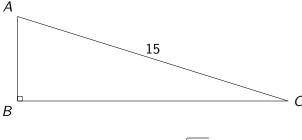



Perimeter of 
$$\triangle ABC = 15 + \sqrt{353}$$





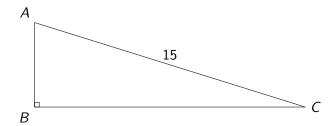

$$AB + BC + AC = 15 + \sqrt{353}$$




Math League, LLC



$$AB + BC + 15 = 15 + \sqrt{353}$$

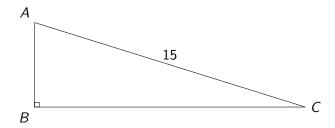





$$AB + BC = \sqrt{353}$$



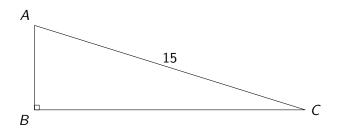
Math League, LLC




$$AB + BC = \sqrt{353}$$

Area of  $\triangle ABC$ 

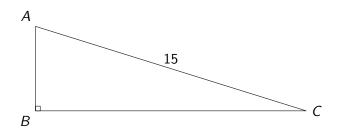






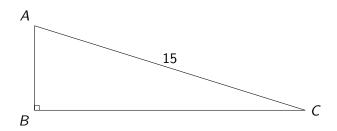

$$AB+BC=\sqrt{353}$$
 Area of  $\triangle ABC=rac{1}{2}\cdot AB\cdot BC$ 





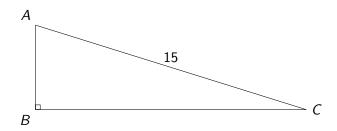



$$AB+BC=\sqrt{353}$$
 Area of  $\triangle ABC=rac{1}{2}\cdot AB\cdot BC$   $(AB+BC)^2$ 





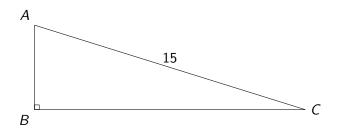




$$AB + BC = \sqrt{353}$$
 Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   $(AB + BC)^2 = AB^2 + 2 \cdot AB \cdot BC + BC^2$ 



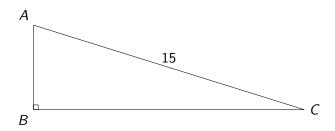


$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $(\sqrt{353})^2 = AB^2 + 2 \cdot AB \cdot BC + BC^2$ 



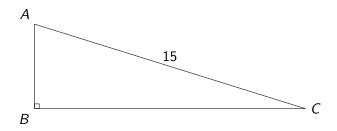



$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $353 = AB^2 + 2 \cdot AB \cdot BC + BC^2$ 





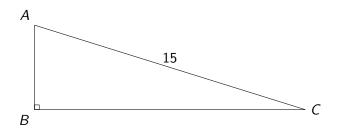




$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $353 = AB^2 + (2 \cdot AB \cdot BC + BC^2)$ 



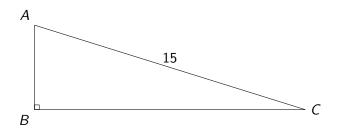



$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $353 = AB^2 + (BC^2 + 2 \cdot AB \cdot BC)$ 





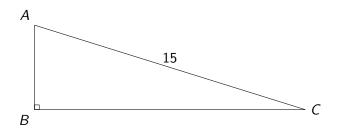

$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $353 = AB^2 + BC^2 + 2 \cdot AB \cdot BC$ 







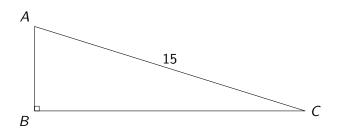

$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $353 = (AB^2 + BC^2) + 2 \cdot AB \cdot BC$ 






$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $353 - (AB^2 + BC^2) = 2 \cdot AB \cdot BC$ 

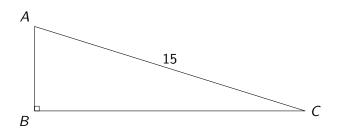



◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣へ○



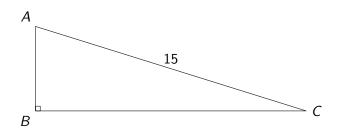
$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $2 \cdot AB \cdot BC = 353 - (AB^2 + BC^2)$ 




◆□▶◆□▶◆■▶◆■▼ 900

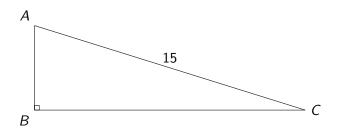


$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $2 \cdot AB \cdot BC = 353 - (AB^2 + BC^2)$   
 $AB^2 + BC^2 = AC^2$ 



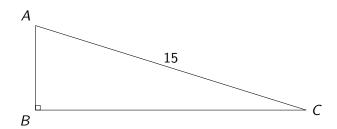

Math League, LLC




$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $2 \cdot AB \cdot BC = 353 - (AB^2 + BC^2)$   
 $AB^2 + BC^2 = 15^2$ 

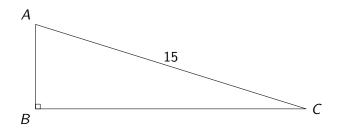





$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $2 \cdot AB \cdot BC = 353 - (AB^2 + BC^2)$   
 $AB^2 + BC^2 = 225$ 





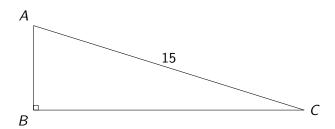

$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $2 \cdot AB \cdot BC = 353 - 225$   
 $AB^2 + BC^2 = 225$ 





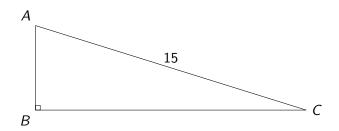
$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $2 \cdot AB \cdot BC = 128$   
 $AB^2 + BC^2 = 225$ 





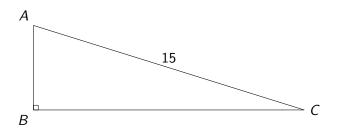

$$AB + BC = \sqrt{353}$$
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$ 

$$\frac{1}{2} \cdot 2 \cdot AB \cdot BC = \frac{1}{2} \cdot 128$$


$$AB^2 + BC^2 = 225$$






$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot AB \cdot BC$   
 $AB \cdot BC = 64$   
 $AB^2 + BC^2 = 225$ 





$$AB + BC = \sqrt{353}$$
  
Area of  $\triangle ABC = \frac{1}{2} \cdot 64$   
 $AB \cdot BC = 64$   
 $AB^2 + BC^2 = 225$ 





$$AB + BC = \sqrt{353}$$

Area of 
$$\triangle ABC = \boxed{32}$$

$$AB \cdot BC = 64$$

$$AB^2 + BC^2 = 225$$



Review the concepts.

## Concepts



Math League, LLC

Review the concepts.

## Concepts

perimeter and area of a triangle





### Concepts

- perimeter and area of a triangle
- algebraic manipulation





### Concepts

- perimeter and area of a triangle
- algebraic manipulation
- Pythagorean theorem

